

Field Study of Long-Term Durability of Wood Plastic Composites

Marek Gnatowski, Ph.D. Polymer Engineering Company Ltd. www.polymerengineering.ca

8th Global WPC and Natural Fibre Composites Conference and Exhibition June 22-23, 2010 Fellbach/Stuttgart, Germany

WPC Manufacturing - USA

Decking and fencing – 51% Moulding and trims - 39% Windows and doors - 4% Others - 6%

WPC sales are expected to advance 10.5 – 11.1% annually thru 2013*

*Freedonia report

PEQ

Polymer Engineering

PEO

Water in WPC

Wood particles are encapsulated in plastic

Polyethylene water saturation ~0.01%

Wood fiber water saturation ~25%

Experimental WPC

Ţ

Experimental WPC

Ingredients	Formulation ID #													
	1	3	4	5	6	8	10	11	12	13	27	28	31	33
Wood - Pine	50	50	50	50	50	65	65	65	65	65				
Wood - Oak											50	50	65	65
HDPE	45	45	45	45	45	30	30	30	30	30	45	45	30	30
Talc %	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Lubricants %	3	3	3	3	3	3	3	3	3	3	3	3	3	3
UV Stabilizer	Yes	Yes	Yes	No	No	Yes	Yes	Yes	No	No	Yes	Yes	Yes	Yes
Zinc Borate %	0	2	3	0	3	0	2	3	0	3	3	0	0	0
Board														
Cross-section	6 x ½	6 x ½	6 x ½	6 x ½	6 x ½	6 x 1	6 x 1	6 x 1	6 x 1	6 x 1	6 x ½	6 x ½	6 x 1	6 x 1
(inches)														

Quantities are approximate

Experimental WPC

-

Exposure Locations

Exposure Locations

Vancouver, BC Annual Weather Data

precipitation: 1118 mm average low temperature: 0°C (January) average high temperature: 23°C (July) hours of sunshine: 1950 pan evaporation: 22 (Bellingham, WA)

Scheffer index: ~50

DAA

Exposure Locations

Hilo, Hawaii

Annual Weather Data

precipitation: 3200 – 5100 mm minimum temperature: 12°C maximum temperature: 34°C hours of sunshine: 2100 pan evaporation: 91 (Honolulu)

Scheffer index: ~330

=

The Scheffer Index

Location	Scheffer Index*
Vancouver, B.C.	~50
Prairie Provinces	~35
Denver, CO	~35
Phoenix, AZ	~7
Wilmington, NC	~80
Miami, FL	~120
Hilo, HI	~350

*Tool for quantifying climatic exposure conditions and predicting wood above-ground performance – based on Average Annual Temperature and the # days/month with measurable precipitation

 $\overline{\overline{}}$

Sample Evaluation

Period of Exposure

DISTANCE FROM SURFACE (mm)

10

24

26 28

12

 $\overline{\overline{}}$

Wood Content in WPC

Sunny Exposure in Vancouver, BC

PAD

-

Wood Species

Sunny Exposure in Vancouver, BC (70 months)

DISTANCE FROM SURFACE (mm)

PAI

Geographical Location

Exposure in Vancouver, BC (46 months) and Hilo, Hawaii (51 months)

-

Presence of UV Stabilizers

Sunny Exposure in Vancouver, BC (70 months)

 $\overline{\overline{}}$

Presence of Zinc Borate

Sunny Exposure in Vancouver, BC (70 months)

DISTANCE FROM SURFACE (mm)

=

Change in WPC Density

Density of WPC (#8) Exposed in Different Climatic Zones

Carbonyl Index

Carbonyl Index HDPE vs WPC

 $\overline{\overline{}}$

D = 1

36 Months Exposure in B.C.

Carbonyl Index: 0.237 (36 months) Carbonyl Index: 0.140 (4 months) 0.244 (36 months) Carbonyl Index: 0.179 (4 months) 0.246 (36 months) 0.234 (4 months) Pine 50% **UV** Stablizer Pine 50%

Zinc Borate 3%

UV Stablizer

Pine 50%

Correlation of Accelerated Weathering to Exterior Exposure

 $\overline{\overline{v}}$

UVB 340 lamps irradiance 0.77 W/m²/nm 8 hours of light (60°C) 4 hours of condensation (50°C) cycle)

BC

California

Hawaii

Depth of UV Degradation 2000h QUV

Raman spectroscopy* oxidized HDPE layer thickness ~0.6 mm

* Courtesy Thermo Nicolet

Conclusions

Wood Plastic Composite (WPC) boards progressively absorb a significant quantity of water during exterior exposure. Moisture content distribution in the board cross-sections has a characteristic U-shape, frequently exceeding the concentration required for decay initiation. Decay was observed for some samples exposed in extreme conditions.

A major factor in water absorption by WPC was the ratio of wood to plastic binder; with the increase of wood content, moisture content progresses very quickly. Another factor in water absorption is the composition of WPC. Certain additives may significantly increase or decrease water absorption (for example zinc borate decreased water absorption in the tested formulations). Climate may not be a major factor here.

Various FTIR techniques can be used to track the oxidative degradation of polyethylene binder in WPC. Analysis of FTIR spectroscopic data can be used for assessment of the relative progress of weathering and the effect of different additives. FTIR analysis of WPC after a few months of exterior exposure may serve as an indicator of long-term performance.

Wood can accelerate photo-oxidation of polyethylene in WPC. The intensity of the process seems to be related to wood species. WPC degradation by UV light seems to be only a surface and shallow subsurface phenomenon

•Some additives commonly used in WPC may have a positive or negative effect on polyethylene photo-oxidation. Zinc borate can be seen as an example of a biocidal additive which also inhibits photo-oxidation.

Acknowledgements

Polymer Engineering staff involved in this research:

- Cecilia Stevens, Ph.D.
- Mathew Leung, B.Sc.
- Kate Mao, B.Eng.
- David Lesewick
- Christine Mah, B.Sc.
- Beverly Start

Washington State University (Wood Materials and Engineering Lab)

Raman spectroscopy Courtesy Thermo Nicolet