Rubber-Steel Interface Failure in Pipeline

Marek Gnatowski, Ph.D., Eng. Polymer Engineering Company Ltd. www.polymerengineering.ca

Steel Equipment Lined with Rubber

Equipment for mining and chemical industry (examples)

Tanks
Pump parts
Separators
Cyclons
Screens
Pipelines
Rollers

Steel Equipment Lined with Rubber

Rubber liners increase equipment life span in extreme service conditions eg:

High slurry wear
High impact
Corrosion
Aggressive environment

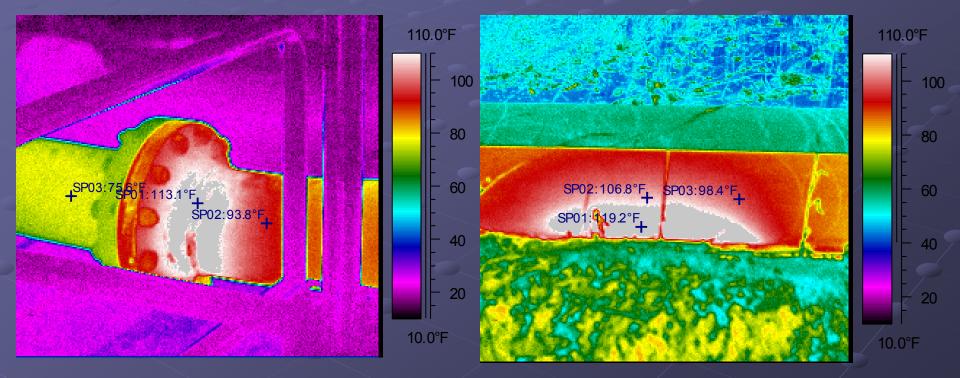
Steel Equipment Lined with Rubber

Premature equipment failure is not always detected and is rarely evaluated in-depth for its cause

The objective of this presentation is to create awareness in scientific and technical societies about certain issues in bonding rubber to steel that may lead to premature interface and rubber failure.

Pipeline Failure

Pipeline Construction


- Over 10 km long
- 200 mm (6") ID
- 12.5 m (40') long spools
- 6 mm (1/4") natural rubber liner

Service Conditions

 Exposed to exterior environment
 Transporting gypsum slurry
 Slurry temperature approximately 50°C (122°F)

Pipeline Failure – Failure Detection Infrared Inspection

Pipeline Failure – Spool Inspection

Pipeline Failure - Laboratory Evaluation

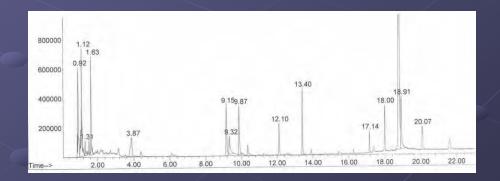
- Water analysis (ICP, ion chromatography)
 Rubber analysis
- Rubber analysis
 - Chemical
 - Mechanical properties
 - Water absorption
- Optical and SEM inspection
 - Interface structure
 - Interface materials EDX analysis
- Interface materials reactivity with water

Laboratory Evaluation Blister water analysis

lon	Concentration mg/c			
1011	Blister water	Rubber A	Pipeline slurry	
Calcium	17	4.6	440-500	
Copper	<0.1	<0.1	NA	
Iron	492	<0.1	NA	
Manganese	250	<0.01	NA	
Potassium	26	2.1	20-30	
Sodium	41	8.5	160-210	
Zinc	38	0.9	NA	
Magnesium	9	0.4	1020-1150	
Chloride	827	0.6	90-140	
Bromide	500	ND	NA	
Sulphate	78	2	5000-5500	
Acetates/Formates	500*	6	NA	
рН	4	6	7.3-7.6	

*approximation based on acetate NA – not tested

ND – below detection limit


Laboratory Evaluation Elementary Analysis of Rubbers

	Concentration ppm			
Elements	Failed rubber Surface Steel interface		Rubber A	
Calcium	234	78	62	
Iron	129	200	61	
Manganese	8	316	1.3	
Potassium	492	372	216	
Sodium	34	276	662	
Chlorine	870	690	100	
Bromine	NA	NA	ND	

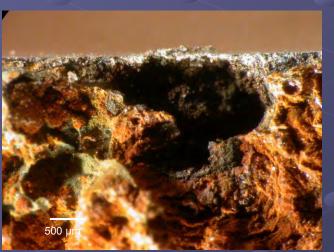
NA – not tested ND – below detection limit

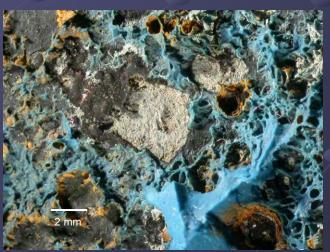
Acetic and Formic Acids as gaseous components released from liner rubber

Compound	Ret. time min	Concentration µg/g		
		Surface	Interface	
Acetic acid	9.14 – 9.23	102	1392	
Formic acid	9.86 – 9.96	80	1845	

Mechanical Properties of Failed Rubber Liner

Properties	Testing Method	Units	Value	
Tensile strength	ASTM D412	MPa psi	0.82 (0.06) 119 (9)	
Elongation at break	ASTM D412	%	160 (20)	
Hardness	ASTM D2240	Shore A	36	


Laboratory Evaluation Microscopic pictures of rubber steel interface

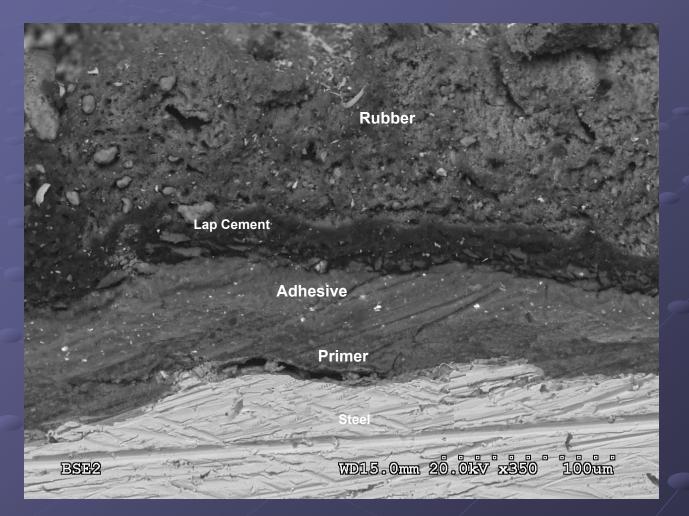

cross-section

delaminated surface

delaminated surface

delaminated surface

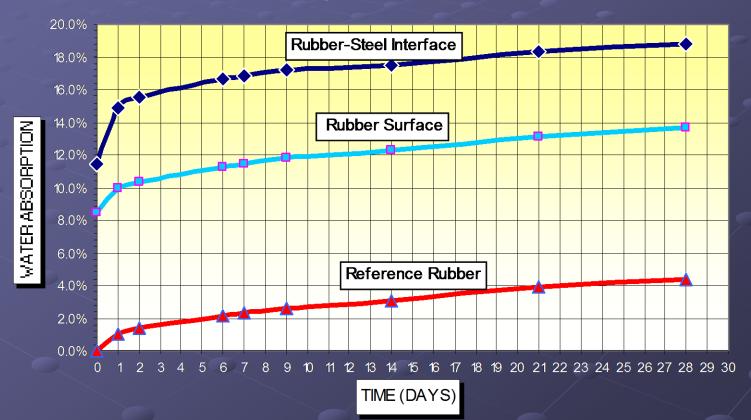
Laboratory Evaluation Microscopic pictures of rubber steel interface


cross-section

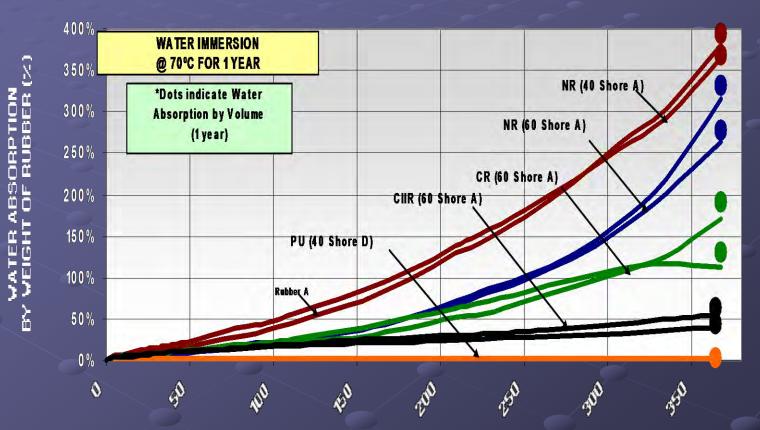
Laboratory Evaluation Microscopic pictures of rubber steel interface

delaminated surface

Laboratory Evaluation SEM Image of Steel-Rubber Interface


EDX Analysis of material layers in the steel-rubber interface

Elements	Concentration %				
Elements	Steel	Primer	Adhesive	Lap cement	Rubber
Carbon	10.2	45	60.2	82.0	80.1
Oxygen	ND	21	6.8	10.3	12.9
Sulphur	N	0.3	1.0	0.9	0.9
Chlorine	ND	10.0	20.9	0.8	ND
Titanium	ND	10.7	0.2	ND	0.5
Iron	89	7.8	7.2	5.8	2.2
Bromine	ND	NA	3.1	ND	ND
Manganese	0.7	NA	ND	ND	ND


Water contaminants from boiling of adhesive and primer films

Elements	Concentration mg/I		
Elements	Primer	Adhesive	
Calcium	2.5	7.4	
Copper	<0.1	<0.1	
Iron	<0.1	0.8	
Manganese	<0.01	0.02	
Potassium	2.1	1.8	
Sodium	17	112	
Magnesium	<0.2	16	
Chloride	202	(1159)	
Bromide	1	532	
Organic acids	3	3	
рН	5.5	2.0	

Water Absorption of Failed Liner Rubber

Water Absorption for Selected Rubber Liners

TIME (days)

Comments and Conclusions

- The majority of rubbers used for bonding with metals frequently show very high water absorption in prolonged contact with water, particularly if this contact occurs at elevated temperatures.
- Water absorbed by rubber may directly affect the rubber-metal interface or may undergo condensation in the vicinity of the metal interface due to the "cold wall effect" particularly when voids are present.
 - A significant quantity of water, which may be present in the rubber bonded with metal, could accelerate metal corrosion directly or indirectly.
 - Some adhesives may react with water in the metal-rubber interface and corrosive compounds may be created, including hydrochloric and hydrobromic acids. This may be an issue when elevated service temperatures are expected.

Comments and Conclusions - 2

- Steel corrosion products may migrate into the rubber and accelerate rubber aging, particularly during elevated temperatures in service. This process is suspected to generate formic and acetic acids further accelerating the corrosion process.
- Most of the standard testing procedures for evaluation of bonding rubbers to metal do not take into consideration long term water absorption by rubbers.
- Further work on environmentally friendly and user friendly rubber to steel adhesives is required, particularly when elevated temperature service is expected in an aggressive environment.

Acknowledgments

The author would like to thank Polymer Engineering Company Ltd. personnel, particularly Christine Mah, Dave Lesewick, and Beverley Start for their contributions to the laboratory work. I would also like to thank Anna Becalska, Herb Lanz, and Brian Louie of Vizon Scitec Inc. for analytical support.