Solvent Resistance and Mechanical Properties in Thermoplastic Elastomer Blends Prepared by Dynamic Vulcanization

J.D. (Jack) Van Dyke Trinity Western University, Langley, B.C., Canada Marek Gnatowski Polymer Engineering Co. Ltd, Burnaby, B.C., Canada Andrew Burczyk Defence R&D Canada-Suffield, Canada

Mixing Methods

High shear melt mixing

- Without curing agents → non-vulcanized blends
 - Continuous phase dependent on proportions in the blend
- With curing agents \rightarrow *dynamic vulcanization*
 - Non-vulcanized component becomes continuous phase, almost independent of proportion in blend

Non-Vulcanization vs. Dynamic Vulcanization

Objective of Present Work

- Dynamic Vulcanization on a Variety of Thermoplastic / Rubber Combinations
 - Thermoplastics (PA, PP, and PBT)
 - Rubber (CIIR, NBR)
- Measure
 - Mechanical properties
 - Exposure to solvents (hexane and CHCl₃)
 - % insolubility, swelling index
 - DSC and SEM

Effect of % Thermoplastic on Properties

Tensile Strength Comparison in Blends

DSC Results – Thermoplastic Phase

	Tm (°C)	ΔH _f (J/g plastic)
PA	178.7	60.6
PA/CIIR	175.6	58.1
PA/NBR	176.5	58.5
PP	163.3	80.9
PP/CIIR	161.6	83.1
PP/NBR	161.5	80.6
PBT	223.0	38.1
PBT/NBR	222.6	46.0

- Phase separation
- Dynamic vulcanization effects
 - rubber phase (curing, particle formation)
 - thermoplastic phase (MW reduction, graft formation, crystallization effects)

SEM OF PA/NBR BLEND

PA-NBR Blend

PP-NBR Blend

Solvent Uptake – Kinetic Studies

Rate of solvent 6 uptake determined on 5 rubber and blend samples 4 Swelling Index **Blends** achieve 3 equilibrium relatively 2 quickly • 100 NBR 40 PA /60 NBR 1 Example of 100 NBR and 0 40 PA/60 NBR 8 16 24 32 48 56 72 80 40 64 88 96 0 Time (hrs)

Swelling Index: PA – CIIR Blend at Different Compositions

- S.I. Values consistently below theoretical line (physical mixture)
- Continuous thermoplastic phase prevents solvent expansion of cured rubber phase

Swelling Index Values for Other Blends

Swelling Index Values for Other Blends

Relationship Between Swelling Index and % Elongation

 Minimum elongation reached at similar composition as change in S.I. Curve

- Phase inversion
- Similar results for all blends studied.

Conclusions

- 1. Dynamic vulcanization variety of rubber plastic blends, many with elastomeric properties.
 - Elastomeric properties seen between 20-40% thermoplastic
- 2. Both rubber and plastic phases affected during the dynamic vulcanization process.
- 3. Solvent exposure rapid swelling upon exposure to solvent (tested on hexane and CHCl₃). Similar performance expected with other solvents.

Conclusions (continued)

- 4. S.I. values of blends are significantly less than expected "theoretical" values.
 - "caging effect" at higher thermoplastic compositions.
- 5. Minimum elongation values reached at phase inversion.
- 6. Increased compatibility in blends
 - reduced particle size (discrete phase)
 - frequently produces less caging effect on the rubber phase

Acknowledgements

- Defence R&D Canada Suffield
- Laboratory staff at PEC
 - Dave Lesewick, Christine Mah, Beverley Start
- Laboratory staff at TWU
 - Leanne Edwards, Simon Moore, Kim Klassen
- DRDC Esquimalt (SEM results)
 - Bruce Kaye

Website: www.polymer-engineering-co.com/