Solvent Resistance and Mechanical Properties in Thermoplastic Elastomer Blends Prepared by Dynamic Vulcanization

J.D. (Jack) Van Dyke
Trinity Western University, Langley, B.C., Canada

Marek Gnatowski
Polymer Engineering Co. Ltd, Burnaby, B.C., Canada

Andrew Burczyk
Defence R&D Canada-Suffield, Canada
Mixing Methods

High shear melt mixing

- Without curing agents → *non-vulcanized blends*
 - Continuous phase dependent on proportions in the blend

- With curing agents → *dynamic vulcanization*
 - Non-vulcanized component becomes continuous phase, almost independent of proportion in blend
Non-Vulcanization vs. Dynamic Vulcanization
Objective of Present Work

- Dynamic Vulcanization on a Variety of Thermoplastic / Rubber Combinations
 - Thermoplastics (PA, PP, and PBT)
 - Rubber (CIIR, NBR)

- Measure
 - Mechanical properties
 - Exposure to solvents (hexane and CHCl₃)
 - % insolubility, swelling index
 - DSC and SEM
Effect of % Thermoplastic on Properties

PP-CIIR Blends

- **Tensile Strength (MPa)**
 - % Polypropylene:
 - 18: 20
 - 20: 25
 - 25: 30
 - 30: 35
 - 35: 40
 - 40: 50
 - 50: 60-90
 - 60-90: 100

- **Hardness (Shore D)**
 - % Polypropylene:
 - 18: 18
 - 20: 20
 - 25: 25
 - 30: 30
 - 35: 35
 - 40: 40
 - 50-90: 60
 - 100: 90
Tensile Strength Comparison in Blends

- PA-CIIR
- PP-CIIR
- PA-NBR
- PP-NBR
- PBT-NBR

Tensile Strength

Blend Type

% Plastic
DSC Results – Thermoplastic Phase

<table>
<thead>
<tr>
<th>Material</th>
<th>Tm (°C)</th>
<th>ΔH_f (J/g plastic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA</td>
<td>178.7</td>
<td>60.6</td>
</tr>
<tr>
<td>PA/CIIR</td>
<td>175.6</td>
<td>58.1</td>
</tr>
<tr>
<td>PA/NBR</td>
<td>176.5</td>
<td>58.5</td>
</tr>
<tr>
<td>PP</td>
<td>163.3</td>
<td>80.9</td>
</tr>
<tr>
<td>PP/CIIR</td>
<td>161.6</td>
<td>83.1</td>
</tr>
<tr>
<td>PP/NBR</td>
<td>161.5</td>
<td>80.6</td>
</tr>
<tr>
<td>PBT</td>
<td>223.0</td>
<td>38.1</td>
</tr>
<tr>
<td>PBT/NBR</td>
<td>222.6</td>
<td>46.0</td>
</tr>
</tbody>
</table>

- Phase separation
- Dynamic vulcanization effects
 - rubber phase (curing, particle formation)
 - thermoplastic phase (MW reduction, graft formation, crystallization effects)
SEM OF PA/NBR BLEND

PA-NBR Blend

PP-NBR Blend
Solvent Uptake – Kinetic Studies

- Rate of solvent uptake determined on rubber and blend samples
- Blends achieve equilibrium relatively quickly
- Example of 100 NBR and 40 PA/60 NBR
Swelling Index: PA – CIIR Blend at Different Compositions

- S.I. Values consistently below theoretical line (physical mixture)
- Continuous thermoplastic phase prevents solvent expansion of cured rubber phase
Swelling Index Values for Other Blends

PP-CIIR Blends

Swelling Index

PA-NBR Blends

Swelling Index
Swelling Index Values for Other Blends

PP-NBR Blends

- **Swelling Index**

PBT-NBR Blends

- **Swelling Index**
Relationship Between Swelling Index and % Elongation

- Minimum elongation reached at similar composition as change in S.I. Curve
 - Phase inversion
- Similar results for all blends studied.
Conclusions

1. Dynamic vulcanization – variety of rubber plastic blends, many with elastomeric properties.
 - Elastomeric properties seen between 20-40% thermoplastic

2. Both rubber and plastic phases affected during the dynamic vulcanization process.

3. Solvent exposure – rapid swelling upon exposure to solvent (tested on hexane and CHCl₃). Similar performance expected with other solvents.
4. S.I. values of blends are significantly less than expected “theoretical” values.
 - “caging effect” at higher thermoplastic compositions.

5. Minimum elongation values reached at phase inversion.

6. Increased compatibility in blends
 - reduced particle size (discrete phase)
 - frequently produces less caging effect on the rubber phase
Acknowledgements

- Defence R&D Canada – Suffield
- Laboratory staff at PEC
 - Dave Lesewick, Christine Mah, Beverley Start
- Laboratory staff at TWU
 - Leanne Edwards, Simon Moore, Kim Klassen
- DRDC – Esquimalt (SEM results)
 - Bruce Kaye

Website: www.polymer-engineering-co.com/