New International Conference

Polymers in Defence and Aerospace Applications

18th-19th September 2007 – Toulouse, France

www.polymerconferences.com

— A Smithers Group Company

NOVEL NYLON/HALOGENATED BUTYL RUBBER BLENDS IN PROTECTION AGAINST WARFARE AGENTS

Marek Gnatowski, Polymer Engineering Company Ltd, Burnaby, B.C., Canada
J.D. (Jack) Van Dyke, Trinity Western University, Langley, B.C., Canada
Andrew Burczyk, Defence R&D Canada-Suffield, AB, Canada

Special Gear to Protect Humans and Resources Against an Aggressive and Hostile Environment

- o Space
- o Underwater
- Natural or man made disasters
- o War

Polymeric Materials are Used in Protective Gear for the Following Reasons:

- Wide range of mechanical properties
- Relatively resistant to hostile and aggressive environment (if properly selected)
- Easy moulding
- Wide range of coefficient of friction
- o Light weight
- o Variety of colours

Materials Properties

Material	Elastomeric Behaviour	Modulus of Elasticity MPa	Density g/cm ³	Coefficient of Friction	Barrier Properties
Polymers	Yes (in selected materials)	10 – 40,000	0.8 – 2.3	0.05 - 4	Variable
Metals	No	300 – 400,000	2 - 20	0.15 - 5	Excellent
Ceramics and Glasses	No	200,000 – 450,000	2.5 - 6	0.6 - 1	Excellent

Properties of selected commercial polymeric materials

Material		Resistance to			Mechanical Behaviour		Processing
		CWd	Water*	Oil and Fuels	Engineered Plastic	Elastomer	Friendly
Butyl, Halogenated Butyl Rubber	(C,B) IIR	4	4	1	1	4	2-3
Natural Rubber (polyisoprene)	NR	1	1-3	1	1(3)°	4	2-3
Chloroprene	CR	1-2	2-3	4	1	4	2-3
Nitrile Rubber	NBR	1-2	3	4	1	4	2-3
Santoprene (PP/EPDM)	TPE	1	3	1-2	1	4	4
Polyurethane Elastomer	PU	1-2	2-3	3-4	1	4	3-4
Polyamides (Nylons)	ΡΑ	3-4	3 (1) ^a	4	4	1	3-4
Aromatic Polyesters (PBT, PET)	PET, PBT	4	4 (2) ^a	4	4	1	3-4
Polyvinyl Alcohol (PVOH)	PVA	2-4	1	4	3	1	1-3 ^b
Polystyrene	PS	1	4	1	2-3	1	4
HDPE	HDPE	1	4	3-4	2-3	1	4

4 – excellent 3 – good

2 – acceptable

1 – unacceptable

a. immersion in hot water

b. requires modification

c. ebonite

d. CW - chemical warfare agent

* long term exposure

Easy Moulding

- Compression moulding
- Injection moulding
- o Extrusion

Materials Selection for Blending

A. Nylon 12

- Excellent barrier properties
- Excellent mechanical properties
- Relatively low processing temperature (190 – 220°C)
- Commercially available

B. (Halogenated) Butyl Rubber

- Good mechanical properties
- Good warfare agent resistance
- Commercially available

Challenges in Blending

- Physical incompatibility of nylon and halogenated butyl rubbers
- Incorporation of over 50% rubber into the blend
- Maintaining thermoplastic properties and good mechanical properties of blend

Blending Procedure

Mixing

Potential Compatibilization of Blend

% Insolubles – Non-vulcanized vs. Dynamically Vulcanized

Comparison of Tensile Strength

Non-vulcanized vs. Dynamically Vulcanized

Nylon Halogenated Rubber Blend

Swelling index and elongation at break for dynamically vulcanized blends in ${\rm CHCI}_3$

Nylon Halogenated Rubber Blend

Blend Microstructure

Effect of Moulding Conditions on Tensile Strength and Elongation at Break

Testing according to ASTM D 638M, specimen type M-III

Effect of Moulding Conditions on Tensile Modulus

Effect of Moulding on Hardness

Testing according to ASTM D 638M, specimen type M-III

Effect of Flow in Mould on Mechanical Properties

Effect of Flow on Blend Microstructure

Penetration* for all samples was 0 µg at testing conditions

*method of testing described in C.L. Stevens presentation "Nylon-12 Nanocomposite Thin Films as Protective Barriers"

New Development of Special Polymeric Materials Will Bring Revolutionary Changes to Protective Equipment

- Increase protection efficiency
- Decrease the burden on personnel
- Decrease manufacturing costs

Post World War II

The Future

1980's

Conclusions

- 1. Nylon can be blended with butyl or halogenated butyl rubber to obtain material with thermoplastic elastomer properties
- 2. Properties of the blends depend on nylon/rubber ratio, mixing conditions, and vulcanizing agent used
- 3. Mechanical properties also depend on moulding conditions and mould geometry
- 4. Nylon-chlorobutyl thermoplastic elastomers showed excellent resistance to penetration and reemission of warfare agents
- Nylon-chlorobutyl blends showed significantly better resistance to hydrocarbon and chlorinated hydrocarbon solvents than could be expected from the rubber content in the blend

Acknowledgments

Laboratory Support

Polymer Engineering Company

- Andrew Koutsandreas
- o Dave Lesewick
- o Christine Mah
- o Beverley Start
- o Kate Mao

Trinity Western University

- Andrea Lengkeek
- o Leanne Edwards
- o Sebastian Temple
- DRDC Dockyard Laboratory Pacific
- Bruce Kaye

DRDC – Suffield

o Benoit Lacroix

Materials Suppliers

- o Exxon Mobil
- o Bayer
- EMS Grivory