

PECULIAR MECHANICAL PROPERTIES AND MICROSTRUCTURE OF POLYAMIDE-CHLOROBUTYL RUBBER BLENDS BY DYNAMIC VULCANIZATION

Daniel Ramrus Marek Gnatowski J. D. (Jack) Van Dyke Andrew Burczyk

Objective

- Design a material that is elastic, and has chemical barrier properties
- Manufacturing requirements
 - Made from commercially available materials and processes
 - Thermoplastic processing techniques
 - Cost effective
- Applications
 - Protective gear
 - Equipment for aggressive environment
- "Good" mechanical properties

Background of Elastomeric Materials

Processing

- Vulcanized elastomers
 - Diene based
 - Natural rubber
 - Butadiene rubber
 - Silicone
 - Butyl rubber

- Elastomeric Urethane Polymers
- Ionomers
- Certain block co-polymers
- Plasticized polymers
- Dynamically vulcanized polymer blends

Dynamically Vulcanized Polymer Blends

- Chlorobutyl rubber (CIIR)
 - Soft elastic material
 - High elongation at break
 - Good barrier properties for many chemicals
 - Low water absorption
 - Hardness: 30-80 Shore A
 - Specific gravity: 0.9
 - T_g: -40^oC
 - 1.26% chlorine

Exxon Chlorobutyl rubber 1068 EMS- Grillimide PA 12 L16

- Challenges and Opportunities
 - Optimize with respect to barrier properties
 - CIIR and nylon have a $+\Delta G_{mix}$

- Nylon 12 (Polyamide)
 - Hard engineering plastic
 - Excellent barrier properties
 - Low water absorption
 - Melt point: 178°C
 - Hardness:73 Shore D
 - Specific gravity: 1.01
 - $T_{g}: 66^{\circ}C$

Nylon/CIIR Rubber Blend

Strands form due to elongation during high shear

Dynamic Vulcanization 50:50

Rubber always dispersed phase

Preparation of Dynamically Vulcanized Elastomers

Batch mixing with high shear roller blades using Prep Mixer

- Nylon pellets (30-40%)
- CIIR (Rubber) (60-70%)
- ZnO, Stearic Acid, Wax
- Add sulfur to vulcanize system
- Pull out products when torque stabilizes (~12 minutes)
- Grind products

Samples Preparation

Injection moulding

Compression moulding

Specimen Preparation

Injection moulding ASTM 638M (M1 and M3)
Die cutting of injection moulded M3 samples

- Die cutting from extruded and compression moulded materials
- M2 and M3

RESULTS

- Mechanical Testing
- DMA
- DSC
- SEM
- AFM-PFM

Mechanical Testing

Injection Moulded

- Die Cut from IM
- Die Cut from CM
- Die cut from Extruded Sample in MD
- Die Cut from Extruded sample in TD

Injection and MD extrusion moulding and has superior tensile at break properties than compression moulding due to alignment of nylon during flow.

30/70 and 40/60 samples show similar trends but TS at yield increases with higher nylon content

M3- Nylon/ CIIR 30/70 blend

SEM 40/60 Blend

4mm particles reduced to 1-3µm by blending process

• No obvious alignment of rubber particles due to extrusion or injection moulding

AFM-Pulse Force Mode (PFM)

(Source: Witec and Topometrics webpage)

AFM Images

•70/30 Rubber/Nylon

- •Cut sample
- •15µm scan

AFM Images of Adhesion and

Stiffness

- Rubber: low stiffness, high adhesion
- Nylon: high stiffness, low adhesion
- Lighter colors indicate exposed rubber
- 70% of nylon is exposed in this cross section even though 30% by volume in blend
- This indicates substantial cohesive failure in nylon
- High adhesion between nylon and rubber phases despite chemical incompatibility

Adhesion

Conclusions

- Mechanical properties depend on sample preparation method
- DMA: shift down in T_g of blended CIIR component
- DSC: increased ΔH_f increase in nylon phase of TPE blends indicating high orientation due to rubber balls in shear with nylon during processing
- SEM: 1-3µm CIIR particles and no significant alignment due to flow
- AFM: significant failure in nylon phase indicating strong adhesion between CIIR and nylon and the cut is occurring in a harder phase which is unexpected
- Properties of nylon dictate physical properties of the blend as seen by the increase in tensile strain at yield and break of the 40/60 blend in comparison to the 30/70
- Morphology failed to explain mechanical properties

Acknowledgements

- PEC staff Andy Koutsandreas, Dave Leswick, Cecilia Stevens, Mathew Leung
- TWU staff Sebastian Temple, Benson Jelier
- John Berg University of Washington in Seattle
- DRDC Canada (funding and contribution to project)

About PEC

- Based in Vancouver, BC. Canada
- Privately owned consulting company
- Testing and analysis
- Designing materials for unique polymer applications
 - Specializes in polymer technology
 - Plastic materials
 - Coatings
 - Paints
 - Adhesives
 - Rubbers

Tensile Strain at Yield Versus Break

Sulfur Cure 40/60

Tensile strain at Yield

Tensile at Break

Mechanical Properties Summary Table

					Tensile strain at		Tensile Stress at		Modulus 1.1-		Axial		Tensile at	
				Description	Yield		yield		1.8%		Strain		Break	
Cure Method and	Process	Specimen	1			std		std				stde		stde
nylon rubber ratio	Method	Туре	Sample ID		MPa	ev	%	ev	MPa	stdev	%	v	MPa	v
Sulfur 30/70	м	M1	060724-1	As moulded	6.0	0.6	4.9	0.1	113.0	10.0	178.0	12.0	8.3	3 0.3
		M3	060724-1	As moulded	6.7	0.6	9.9	0.4	194.0	38.0	172.0	17.0	14.3	3 0.7
				Die Cut from Impact										
		M3	060724-1	bar	11.8	5.0	5.0	0.5	65.8	3 27.1	197.0	40.0	7.9	9 0.9
	Compres	M2	060724-1	Die Cut from Sheet	9.8	1.4	2.6	0.1	39.6	5 8.2	85.0	27.0	1.3	3 0.3
		M3	060724-1	Die Cut from Sheet	10.3	2.2	2.6	0.2	43.7	7.9	132.0	19.5	5.4	4 0.4
	Extrusion	M2	060802-1	Die Cut MD	5.9	1.2	5.1	0.6	65.5	16.8	161.6	11.3	8.8	3 1.1
		M3	060802-1	Die cut MD	7.3	2.3	6.1	0.2	130.9	21.3	194.5	20.8	11.7	7 0.3
		M3	060802-1	Die cut TD	8.9	2.0	3.5	0.3	<mark>.</mark> 59.2	2 9.3	190.4	10.7	6.3	3 0.2
Sulfur 40/60	IM	M1	060717-1	As moulded	5.0	0.6	8.9	0.1	266.8	31.6	219.8	22.4	12.3	3 0.7
		M3	060717-1	As moulded	5.7	0.7	14.3	0.7	298.4	128.2	244.0	3.3	20.2	2 1.7
				Die Cut from Impact										
		M3	060717-1	bar	6.3	1.3	8.2	0.2	188.4	60.4	278.8	4.0	13.3	3 0.6
	Compres	M2	060717-1	Die Cut from Sheet	5.3	0.2	5.2	0.1	129.3	3 26.3	98.4	15.9	8.4	4 0.5
		M3	060801-1	Die Cut from Sheet	5.5	0.4	5.6	0.2	2 77.2	20.5	149.5	24.4	9.5	5 0.6
	Extrusion	M2	060801-1	Die Cut MD	8.1	2.0	8.2	0.5	229.0) 124.3	314.6	17.1	14.3	3 1.1
		M3	060801-1	Die Cut MD	8.8	3.6	7.4	0.9	134.1	22.1	340.6	45.3	14.9	9 1.1
		M3	060801-1	Die Cut TD	6.2	1.4	7.3	0.2	2 105.3	50.9	261.2	59.9	11.6	5 1.2
100% Nylon	IM	M1	100129	As moulded	5.0	0.2	41.6	0.6	974.0	47.2	332.7	64.4	41.6	5 10.4
		M3	100129	As Moulded	4.4	0.3	44.5	0.3	1044.2	140.9	439.7	15.8	74.6	5 4.4
			100120	Machined from				0.0				10.0		1
		M3	100129	Impact Bar	5.3	0.6	44.5	1.6	1369.5	497.8	338.1	36.7	45.2	2 4.5
100% rubber	CM	M2	060717-1	Die Cut from Sheet					0.6	5 0.1	517.7	24.6	2.1	1 0.2

Tools

- Instron mechanical properties
 - Elongation at break
 - Tensile strength
- DMA (Dynamic Mechanical Analysis) Netzch DMA 242
 - Modulus, tan delta
- DSC (Dynamic Scanning Calorymetry) Perkin Elmer DSC7
 - Crystallinity
- FTIR (Fourier Transform InfaRed Spectrum) Thermo-Nicolet 370
 - Changes in chemistry of the rubber during mixing
- SEM (Scanning Electron Microscope) Hitachi N3000S
 - Imaging
- AFM/PFM (Atomic Force Microscope/Pulsed Force Mode) Park Scientific Autoprobe CP
 - Imaging- mechanical differentiation between rubber and nylon

Atomic Force Microscopy (AFM)

Laser reflects off the back of the cantilever

