

Microstructure, Barrier Properties, and Mechanical Properties of Nylon-12 Nanocomposite Films

by

Dr. Cecilia L. Stevens, Polymer Engineering Company

Dr. Marek J. Gnatowski, Polymer Engineering Company

Dr. Scott Duncan, Defence Research and Development Canada

Samples

- Extruded films
- 1.0 mil thick
- 10% treated montmorillonite clay in nylon-12
- Various blending methods

Batch blending for 1 minute (B)

REE 67 prep mixer with high-shear roller blades (W.C. Brabender)

Single-screw extrusion (C)

25mm extruder with mixing screw, L/D = 25 (W.C. Brabender)

Twin-screw extrusion with compounding screws (D)

D6-2 counter-rotating twin-screw extruder, L/D = 6 (W.C. Brabender)

Twin-screw extrusion with standard screws (E)

TSE 20mm co-rotating twin-screw extruder, L/D = 40 (W.C. Brabender)

Methods of Assessment

- Physical
 - Mechanical properties
 - Stress
 - Strain
 - Young's modulus
 - Barrier properties
 - Breakthrough time
- Structural
 - TEM imaging
 - Platelet size
 - Platelet exfoliation
 - FTIR spectroscopy

Observed Platelet sizes (nm)

A (100% nylon-12)	N/A
B (batch blended)	202
C (single-screw extrusion)	171
D (compounding twin-screw)	144
E (standard twin-screw)	111

Platelet exfoliation Batch blending (B)

Platelet exfoliation Single-screw extrusion (C)

Platelet exfoliation Compounding twin-screw (D)

Platelet exfoliation Standard twin-screw (E)

Mechanical properties Strain (%)

Mechanical properties Ultimate tensile stress

Mechanical properties Young's modulus

Breakthrough time

FTIR spectroscopy

FTIR example spectrum

Conclusions

- Platelet size starts to decrease prior to full exfoliation.
- Prior to full exfoliation, mechanical properties are not highly responsive to platelet size (completeness of exfoliation).
- After exfoliation, elongation at break is directly dependent on platelet size.
- After exfoliation, stress and Young's modulus are not highly responsive to platelet size, although improved over non-exfoliated samples.
- Barrier properties are inversely related to platelet size both before and after exfoliation.
- FTIR may be responsive to nanoclay dispersion.

Acknowledgements

Polymer Engineering Company

Dr. Marek Gnatowski pecltd@telus.net David Lesewick Beverley Start

University of British Columbia TEM Kim Rensing Derrick Horne Defence Research and Development Canada

Dr. Scott Duncan Scott.Duncan@drdc-rddc.gc.ca Ben Lacroix

W.C. Brabender Andrew Yacykewych

Suppliers Nanocor EMS-Grivory